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KINEMATICAL AND DYNAMICAL INELASTIC LIGHT SCATTERING
IN CONDUCTING CRYSTALS *

O. Keller
Group of Physics, Institute 7
Aalborg University Centre, -DK-9100 Aalborg, Denmark

Fundamentals of the kinematical quantum theory of
inelastic light scattering from electronic excitations
in conducting crystals are reviewed. Keeping both the
|3}/? and p*A terms in the photon-electron interaction
the general expression for the differential scattering
cross-section is obtained. Emphasizing opacity effects
and anisotropies arising from the Doppler shift the
scattering kinematics is analyzed. The scattering from
free-carrier density fluctuations is considered briefly.
The basic concepts of a recently established phenomeno-
logical theory of dynamical light diffraction in opagque
crystals are discussed, and some aspects of a predicted
phonon induced anomalous transmission of light below
the plasma edge in semiconductors are studied.

* Presented by invitation of the GPS Chairman at the S5l-st Annual
Meeting of the Louisiana Academy of Sciences, February 4, 1977,
Shreveport, Louisiana,USA,
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I. INTRODUCTION

The purpose of this paper is twofold. One is to review
some of the basic properties of the quantum theory of kinematical
inelastic light scattering from electronic excitations in
conducting crystals. The books by Cardona et al.l, and by Platz-
man and WOlffz are excellent general references for this subject.
The other is to present a recently established semi-classical
theory of sound induced dynamical light diffraction in semicon-
ductors 3.

In section IX the differential scattering cross-section
is obtained using time-dependent perturbation theory. The contri-
butions to the cross-section arising from the [A|? and p-A terms
in the photon-electron interaction Hamiltonian are calculated by
first~ and second-order perturbation expansion, respectively.

The inelastic scattering kinematics in transparent and
opaque'crystals is considered in section III, and it is shown
that anisotropy effects may occur as a consequence of the Doppler
shift associated with the-scattering event even if frequency -
and angular dispersions of the refractive index are negligible.

In section IV we.discuss the scattering from free carriers
in the limit where the cross terms in the IK]’ electron-photon
coupling dominate, The general theory is applied to scattering
from a noninteracting electron gas.

Section V is devoted to a study of induced dynamical
diffraction of light in semi-infinite opaque crystals. Using a
quasi-static two-wave interference approximation the complex
wave vectors of the optical eigenmodes are determined, and the

condition for induced transparency is given. Finally, the theory
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is applied to the case where the diffraction from a collisionless

solid-state plasma dominates.

II. DIFFERENTIAL SCATTERING CROSS-SECTION

The system we are concerned with in this section consists

of a radiation field, described by a radiation Hamiltonian B

Rl
and a material system, described by a Hamiltonian ﬁM. Radiation
and matter interact via an interaction Hamiltonian QMR' In an

inelastic light scattering process a guantum of the incident
radiation is annihilated and a guantum of the scattered radiation
is created. In a Stokes process a collective excitation or a
guasi-particle is created whereas an elementary crystal excitation
is annihilated in an anti-Stokes event. The anti-Stokes process
can occur only if the crystal is initially in an excited state.

In the absence of any interaction between the radiation
and matter fields the unperturbed Hamiltonian for the combined
system of photons and electrons is given by

~

- - ot
H, = H_ + I fiw (a, a, + % . (1)
0 M N - - -
P ku ku  ku
In the last term, which represents HR in the second-quantization
formalism, the creation and destruction operators for photons of

+
wave vector k, polarization u, and angular frequency w, have

~ ~ ku
been denoted by a: and a .

ku fu
The coupling of non-relativistic electrons, with charge
-e and mass m, to a radiation field described by the vector
potential Kf can be analyzed by decomposing the interaction

Hamiltonian into two terms
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H =H +H . (2)

The gquantum-mechanical expression for the term HA' which is

linear in K, can be written
[B(-k)-e_ a, +H.C.], (3)

where 3* is the unit polarization vector for a transverse photon
-> ku ~
XK,u. The normalization volume is V. The term HAA’ which is

quadratic in the vector potential, is given by

. N v .
"t Zm gt T T

r ’

1771 ™2772 klul kz“z
e R
1M1 Ka¥p kg Kpk,

NCRpEE 3 A al  +mc] . )

141 ka¥p KMy kpup

In Egs. (3) and (4) the Fourier transform of the mady-particle

number and momentum operators of the electrons, i.e.

~ik-T,

NE) =L e 3o f 7T 5 s(E-Earr -
j j J
[ eIk T nByair (s)

. (6)
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~

have been introduced; ;j and Ej being the position and momentum
operators of the jth electron. The normalization condition used
for the vector potential is such that the observable energy

flux density of photons in the mode Ku becomes

I, = $ckn, (7)
ku ku

i.e. with the zero-point contribution removed, the expectation

value of the Poynting vector operator for the mode. The number

of photons in the mode has been denoted by n_ -

Since light scattering is a two-photﬁﬁ process in which
the scattering medium through the electron-radiation interaction
destroys the incident photon and creates the scattered photon
it follows from Egs. (3) and (4) that a time-dependent pertur-
bation calculation of the rate of scattering from an initial
state [I> to a final state |F> of the unperturbed system de-

scribed by the Hamiltonian H. has to be carried out to first

0
order in ﬁAA (The Fermi golden rule) and to second order in QA.
The transition probability per unit time consistent with a
given final energy for the scattered particle is thus 4
N <F|H, [L><L|H, |I>,?
%——- - %ﬁ I |<P|H,,|T> + I A A § (E;-Ep) - (8)
I+F F L I L

The states |L> which occur in the second term of Eg. (B) are
the virtual intermediate states for the transition. The energy

eigenvalues of the unperturbed states have been denoted EI, EL'
and EF'
By combining Egs. (3), (4), and (8) it appears that the

transition rate from an initial photon state (u,, kK P ) to
1 1 klul
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a final state (u,, k P ) (in the following often for

2 2 kzuz
shortness denoted (1, wl) and (2, wz)) can be written more

explicitly as

1 27

i <n-l,l.flﬁAAln,0,i> +

<n-1,l,flﬂAIn-l,O,E><n-1,0,1|HA[n,0,i>
z — +
3 . Ei-El+ﬁm

1

<n-1,1,f|¥, |n,1,%2><n,1,2]H,|n,0,i> ;2
A A 8 (E,~E
E, ~E ~fAw 1 i
} N A 2

+huw, ~fw

£ 1 2)e (9)

The first and second entrities in the bra and kets for the total
final and initial states refer in the occupation-number formalism
to the initial and final photon states. The energies of the
incident and scattered photons are hwl and hwz, respectively.
The exact initial, intermediate, and final many-body states of
the crystal are {i>, |4>, and |£>; the energies of the states
being Ei' El, and Ef. The overall énergy conservation in the
scattering process is expressed in terms of the delta function.
The three contributions to the scattering matrix element
are shown gfaphically in Fig. 1. Diagram {(a) corresponds, in
accordance with the second order character of the Hamiltonian
ﬁAA‘ to a simultaneous absorption and emissioh of photons 1 and

2. In diagram (b) the material system absorbs in a virtual

process a photon of angular fregquency w and then emits a

1!
photon of frequency Wy and in diagram (c) the crystal system

emits wy first, and then absorbs wy -
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@) (b)

Fig. 1 Feynman diagrams representing the three possible con-

tributions to the first-order inelastic light scattering matrix
element. Diagram (a) describes the first-order interaction via

the Hamiltonian H and diagrams (b) and (c) the two types of

AA’

second-order interaction arising from the operator HA'

The rate of energy removal from the incident beam is

L fiw
2 -
states yu, kz. Since the incident light intensity is cﬁwlnl/v the

2/11*2 where the summation is over possible scattered photon

total power scattering cross-section is given by

T w=> /T -
- 242" Kyuyrkou,
v Karky
g = = {10)
c Ld_} n_*
kjup Ky

The differential scattering cross—section is obtained
from Eq. (10) by converting the summation over izuz to an

integration,
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w,
K u
- 22 qu, e, (11)
7 (2m) c k,H
R,u, 2"2

where dQ is an element of solid angle around Ez‘
By combining Egs. (3), (4), (9), (10), and (ll) and

utilizing that the only non-vanishing matrix elements of 3*

. ku
and al are
ku
+ ; 5
<n, |4, |n_ -1> = <n_ ~lla_|n_>=(n_)*, (12)
ku ku ku ku ku  ku ku

the differential photon scattering cross-section, which is

wl/m2 times the power scattering cross—section, can be written

~-E

d%e ez % ¥ > e, f 2 2 Ei7E¢

o ! 1122 1 e(E) 18, s% B 1 (At ¢ wy-wy)

du, 41reomc2 Y1 i,f itir2 1 ) 1 %2
(13)

where éyi’f is a second-rank tensor with components <f|6xab|i>

given by

<f|6xy,li> = <f]§:(-121+1€2) |4>8,, +

1
@ E, +ho. -E *+

rﬂpa("Z’””“pb(‘kl’“"
mo it R ]

<E|P_(=K,)|2><2|P_(K.)|i>
b1 a2 ] . (14)

Ei-ﬁuz-El

The matrix element in Eg. (14) is proportional to the ab
component of the transition electric susceptibility tensor.

As indicated by the Kronecker delta 6ab' the first term on the
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and temporal fluctuations in the electronic contribution to the
electric susceptibility, i.e.

(%,t) = &

v / exp(-if-;)éxlz(;,t)d’r . (23)

8x
12 &

where the fluctuation due to the elementary excitation (Qa,a)

is given by
8xy 0T st) = 8, , (D exp(i(F-T-2,t)]4c.c, - (24)
q

In opaque crystals the optical wave vectors are complex i.e.

- - - - - . -
kl = Rekl+iImkl and k2 = Rek2+11mk2.
If the scattering volume is a rectangular parallellepiped
vV=r7 a, it follows from the treatment in section II, and from
i

Eqs. (23) and (24) that the scattering cross-section in an

opaque crystal is proportional to
3 2 2170
I 111 {[qi-(nek)i] +[(Imk )+ (Imk,) ] } ¢ (25)

in the limit where the linear extensions of the scattering

volume are large in comparison with the penetration depths of
the radiation i.e. ai(Imkl)i’ ai(Imkz)i >> 1. Thus, it is rea-
lized that the inelastic scattering in opaque media 1s due to

excitations having a range of wave vectors

Ag = Imk, +Imk, (26}
arcund

§ = Rek -rek; (27
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The ratio between‘the magnitudes of the incident and
scattered wave vectors is given by

2. -————nz(mz'fz) (L gi] , ' (17)

1 nl(ml,el) 1
where ny and n, are the refractive indices of the crystal for
the incident and scattered light beams.

According to Eq. (17) deviations from the isosceles
pseudomentum triangle, which is well known from elastic Bragg
diffraction, can occur if the crystal is optically anisotropic
or.if light frequency dispersion effects are of importance.
However, it also appears from the last factor in Eq. (17) that
the normal Bragg law is violated "directly" as a consequence
of the Doppler shift associated with an inelastic scattering
process. Implications for the scattering kinematics arising
from this fact, which seem to have been almost overlooked in
the litterature, are discussed shortly below. Thus, for an
isotropic scolid where the frequency dispersion of the refractive
index can be neglected, one obtains by combining Egs. (15} and
(16) the following expressions for the Bragg angles (81,62) of
the incident and scattered light

Q-
1 +
sing, = 55: (G-8] +8 p (18)

and

1 e
sin@, = - {-2-%[3 - 8] = e} , (19)

g = —2 (20)
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between the phase velocities of the crystal excitation and the
light. Restricting the analysis to optical energies which are
large compared to the crystal excitation energies i.e. Qa << wy

Egs. (18) and (l19) are reduced to

o]
+

- =9 1,
sznel 2“1 T B , (21)
and
2
sinf, = =% = ; 8 . (22)
27 B

Let us apply the results obtained in Egs. (21) and (22)
to scattering from (i) optical phonons characterized by the
simple dispersion relation Qa = QO' independent of q, and (ii)
acoustic phonons showing no dispersion i.e. Qa = qu, where the
acoustic phase velocity Vp is assumed to be independent of a.
For clearness, only the Stokes process is considered below. In
case (i), there occur a minimum value of g obtained in forward
scattering and given by Qnin ¥ nQa/c as indicated in Fig. 2.
The optical wave vectors are in this limit parallel to amin'
The maximum value cof q is obtained in backscattering and given
by Drax = 2nul/c. Inbetween these limits there is a minimum in
sinel at q = (n/c)(Zwlﬂo)s. The quantity sine2 is a monotonically
increasing function of g, which has a zero coincident with the
minimum in sinel. In case (ii) sinel and sin62 increase both
linearly towards Grax * anl/c since the ratioc between the
acoustical and optical phase velocities is much smaller than
unity. For g + 0 one obtains sinel = -sing, + sineo = Vp/(c/n)<<l,
which shows that the scattering is forward but with the acoustical

and optical wave vectors almost perpendicular to each other (see

Fig. 3).
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(= [/ | [ S

Fig. 2 Sine of the Bragg angles of the incident (1) and
scattered (2) photons as a function of the reduced optical
phonon wave vector for a Stokes process. The dispersion rela-
tion of the optical phonon, and the scattering kinematics for
the limiting phonon wave vectors are shown in the inserts. The
kinematics is highly anisotropic for phonons in the long wave-

length region.
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1
£
)
Veq
nv,/c |
q
0
~an/ c Eimax
ke
0 7 1
Q/(2k,) ————=
Fig. 3 Sine of the Bragg angles of the incident (1) and

scattered (2} photons as a function of the normalized acoustic
phonon wave vector for a Stokes process. The vertical separation
of the two linear curves is 2nvp/c << 1, The inserts show the
acoustic phonon dispersion relation, and the scattering kinema-

tics for the limiting phonon wave vectors.

To analyze the scattering kinematics in opaque crystals
one makes use of the fact (see section IV for the details) that
the scattering cross-section is proportional to

<i|6£12(ﬁ,t)6£12(§,0)[i>, where k = kK -iz is the scattering

1
- _ = »i'f-b -
wave vector, and 5X12(k:t) = e2-6x (k,t)-el. The operator

6&12(i,t) is proportional to the Fourier transform of the spatial
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Iv. SCATTERING FROM FREE CARRIERS

The summation over final states f of the many-body
system appearing in Eg. (13) can be carried out formally by

using the Dirac delta-function representation

Ei-E 1 T Ei-Ef
S+ wymw,) = 37 éiz {Texpfl[ 5 +ml—u2}t]dt,
(28)

the closure theorem

I |f><f| =1 . (29)

£
and the relation

. i(Ei-Ef)t/ﬁ "
<i|b(t)|f> = e <i|0(0) | £> ' (30)

where the perturbation operator 0 in the Helisenberg representation
is given by
iH t/A -ifl t/h

Sty =e M Gore M . (31)

As a result of this procedure one obtains

dlo _ 202 e tlegmugdt ooy o SR i >3t
35535 = r°(3I]§ P(E.)-i e <1|6x12(k,t)6x12(k,0)|1>7;'

(32)
» > =+ i,£ > > .
where lez(k,t) = e2~6x (k,t)-el is proporticnal to the
transition susceptibility operator in the Heisenberg representation.
When the optical energies are large compared to important
excitation energies of the many-body system the scattering from
the solid state plasma is usually dominated by the cross terms

in the QAA electron-photon coupling. Neglecting the second term
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in Eqg. (8), the scattering cross-section may be written as

d*o  _ 2 2092y > 2 ., Tt At x A s -1
E v ro(wl](e2 ) iP(Ei)-Le <i|n’ (-Q,t)n(-Q,0) [i>5Z,

k33)
where ;(a,t) = ﬁ(a,t)/v is the Fourier transform of the electron
dengity operator. * ]
If the crystal is initially in thermal equilibrium the

scattering cross-section per unit volume (V = 1) takes the form

2 w -
3%;§§ = rg[;%)(éz-él)zs(o.n) ' (34)

where the quantity
* 1 T4t At % LA =
$(Q,%) = 5= [e  “<i|n (-Q,t)n(-Q,0) |i> dEt {(35)
- 00

is the so-called dynamical structure factor, and where eren
denotes the thermal ensemble average over the crystal initial
states. The fact that the dynamical structure factor is the
space-time Fourier transform of the electron density-density

correlation function 1i.e.

o - -» >t
S(a,ﬂ) = ']2._1; feiﬂt! Ie-iQ' (- )

rr (36)

<i{A(F,t)A(,0) [1>,d rd’r "L,

indicates that the electron density fluctuations are responsible
for the scattering from the plasma.

In the simple case of a noninteracting electron gas the
dynamical structure factor 50(5,9) can easily be evaluated. In
second quantized notation, one has

~

a0 =zl e, (37
F K+Q X
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where &I and C, are the usual c¢reation and annihilation operators.
K K

Combining Eq. (37), the Hamiltonian

n2K? (38)

- ~t _ A ~d o - -»_-»

[cﬁ' CZJ+ = CR CE + Ci Ci 8 (L-K) ’ (39)
one can show that

B Pk
Spl@.) =2 {fo(EE) [l—fo(EK+6)]6[—Tﬁ—— + n)} , (40)
K
where
ATk N
£,(E,) = <1]cK c§[1>T , (41)
K
nK?

is the Fermi-Dirac distribution function, and ER = Sn the

energy of the plane electron wave having a wave vector K. 1t
follows directly from Eq. (40) that 50(6,9) represents the sum
of all possible scattering events in which an electron goes
from a filled state K to an empty state K+3 with conservation
of energy and momentum between the target and the incident

photon.
v. DYNAMICAL DIFFRACTION
When the crystal is opagque to the incident and scattered

light interference effects among the plane wave components of

the optical wave field must be considered by replacing the
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usual kinematical theory of inelastic scattering by a dynamical
one.

In this section some fundamentals of a recently established
phenomenological theory, which is based on a two-wave interference
approximation, are outlined. It is assumed that (I) the crystal
is semi-infinite, (1I) the wave vector of the dielectric disturb-
ance is parallel to the surface, (III) the scattering plane is
perpendicular to the boundary plane, (IV) only bulk scattering
effects are of importance, and (V) a quasi-static approximation

(w, >> Q) is valid.
1 q

A. Boundary effects

Limiting the analysis to isotropic scattering geometries
one finds that the real wave vectors of the incident (Eol) and
scattered (ﬁoz) optical waves outside the crystal are related
by the equation

kgy = ~(kg; + Q- 42)
Inside the crystal the incident and scattered waves are inhomo-
geneous. Elementary considerations based on Maxwell's equations
and Bragg's law show that the real parts of the "inside" wave

vectors fulfil the condition

= Rek. tg (43)

-
Rek2 1

and the imaginary parts the relation

- - -
Imkl = Imkz =2 yn (44)

where n is a unit vector perpendicular to the surface, and y

is the amplitude attenuation coefficient of the modes.
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B. wWave field

The wave field in the crystal is obtained by solving
the inhomogeneous time-independent wave equaticn for the total
field E(F,w) neglecting the Doppler shifts (v = w, z w

- - 2

ET,w-TEEw = @) [E) 4 C(E,w) ET,w), (45)

7

<N

where ?0 is the unperturbed relative dielectric tensor, and

F(E,w) is the time-independent part of the harmonic plane-wave

component (Q*,i) of the dielectric disturbance. The amplitude
g

will be named ?, . The gradient operator has been denoted by
q

v
Restricting the discussion to the interesting case where

the incident and scattered waves are polarized perpendicular to

the scattering plane, one obtains in a two-wave interference

approximation
b
E(r,w) = EO exp (i 5 ) ox

q

fexp( (ik] - Yl)ﬁ-;}sin%(a'; + @1)} , (46)
q
where the real and imaginary parts of the wave vector components
of the two eigenmodes (+,r) perpendicular to the surface are

given by

. 22
ki = 2 {5V [rety EREL R

+ Re€

2 1%
ot iﬁal‘(%) ]} , (47)
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and

2_12
PR UGN SR

2. 1%
-Re; : [E 1+ FD ]} (48)

o q

In the above equations the appropriate components of the complex
dielectric tensor have been denoted by a tilde.

The components of the wave vectors of the plus and
minus sign modes parallel to the surface are equal and real,

and in magnitude given by

b4
k, = -‘21 (49)

The dynamical scattering kinematics is shown schematically

in Fig. 4.

The phase factor ¢, is for the anti-Stokes process

q
given by
Ime
tge, = 4 (50)
q Fhii:a

and for the Stokes process by $ | = -9 . The interpretation

-9 q
of the optical wave pattern in the crystal, as given by Eg. (46},

is straightforward.
According to Eq. (48) the condition for highly transparen-
cy of the material is

|Im§0|
0 < <o 1 (51)

c 2
Reé :!E l‘(%—)
q .

0
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Kor
q
i;z
Fig. 4 Quasi-elastic dynamical light diffraction kinematics

for the two optical eigenmodes outside and inside the crystal.

It should be noticed that the optical properties of a
dielectric perturbed crystal can be oktained from the unperturbed

case by making the replacemcnt

. . - z -~ - % 3
Rec0 RELO 12} ‘Zu) (52)
C. Bunched collisionless plasma

In the following the pbasic formulation of dynamical
diffraction given in the pre.eding subsections is applied to
the case where the scattering frum free-carrier density waves
dominates. It is assumed that the solid-: -at “ma is
collisionless.

In the long wavelength limit the unperturbed dielectric

constant is given by

w 2
gy = gg[1-(R)) (53)
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L
0
tric constant, and &P is the angular plasma frequency. It is
L
0

where € is the lattice contribution to the appropriate dielec-

assumed that £, is real. The perturbed dielectric constant has
an amplitude 3

’ (54)

where B* is the ratio between the amplitude of the space charge
q

density wave and the equilibrium density. In semiconductors the

bunching of the free carriers can be obtained via piezoelectric

coupling or deformation potential coupling to elastic waves.

Introducing the dynamical plasma frequencies a;yn of

the forward diffracted eigenmodes

- 5
~% = |52 o qc ?
“ayn {Jp‘l*‘his)+[2 :g) ) } ! (%)

it follows by combining Egqs. (47), (48), (53}, and (54) that

the electromagnetic modes propagate almost undamped (Yi = 0)
dyn
have the form (see Fig. 5)

ir. the regions w > . The dispersion relations of the modes

N S 21%
x> = Ei.-iiQZEl_l_ (56)
L cu 4

where ¢_ = c/(Er‘;)!lj is the "high frequency" velocity of light.

In the absorbing regions w < m;yn, where ki = J cone obtains

. (G5 )3=u? %
Yy = ———JL'C’-——-—J—— (57)

D b+

The splitting of the dispersion relation at zerxo wave

vector is given by
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Kk, ————

L

Fig. 5 Dispersion relations for dynamically diffracted (+,-)
and undiffracted (0) long wavelength electromagnetic eigenmodes

in a collisionless solid-state plasma. Neglecting band structure

effects the curves approach a common nondispersive w(K)-relation

(») at high frequencies. The shaded part of the lower branch

shows the region of anomalous transmission.
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2_ =%
dyn) (@

- 2 g A 2
(w dyn) 2|A§Iu (58)

p

The minus sign mode suffers enchanced absorption since
ap < a;yn, whereas the plus sign mode i3 subjected to a smaller
damping than the unperturbed mode. This leads to ancmalous

transmission of electromagnetic waves below the plasma edge if

&;yn < Gp, a condition which can be expressed by the important
inequality
- c 2“--Z
lall > ) (= (59)
q P P

Up to now experimentally studies of sound induced anomalous
transmission below the plasma edge in semiconductors have not

been carried out.
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